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Figure 1. An example video from our panoptic video scene graph (PVSG) dataset. The top row shows some keyframes overlaid with
the frame-wise panoptic segmentation masks. The timeline tubes underneath the keyframes contain fine, temporal scene graph annotations.
The PVSG dataset contains 400 videos (with an average duration of 76.5 seconds), including 289 third-person and 111 egocentric videos.

Abstract

Towards building comprehensive real-world visual per-
ception systems, we propose and study a new problem called
panoptic scene graph generation (PVSG). PVSG relates to
the existing video scene graph generation (VidSGG) prob-
lem, which focuses on temporal interactions between hu-
mans and objects grounded with bounding boxes in videos.
However, the limitation of bounding boxes in detecting non-
rigid objects and backgrounds often causes VidSGG to miss
key details crucial for comprehensive video understand-
ing. In contrast, PVSG requires nodes in scene graphs
to be grounded by more precise, pixel-level segmentation
masks, which facilitate holistic scene understanding. To ad-
vance research in this new area, we contribute the PVSG
dataset, which consists of 400 videos (289 third-person +
111 egocentric videos) with a total of 150K frames labeled
with panoptic segmentation masks as well as fine, temporal
scene graphs. We also provide a variety of baseline methods
and share useful design practices for future work.

*Main contributors. � Corresponding author.

1. Introduction

In the last several years, scene graph generation has re-
ceived increasing attention from the computer vision com-
munity [15, 16, 25, 50–53]. Unlike object-centric labels like
“person” or “bike”, or the precise bounding boxes typical
in object detection, scene graphs offer a richer representa-
tion of images by capturing both objects and their pairwise
relationships and/or interactions, such as “a person riding a
bike”. A notable trend in this field is the evolution from
static, image-based scene graphs to dynamic, video-level
scene graphs [1,43,51], marking a significant advancement
towards more comprehensive visual perception systems.

While videos undoubtedly provide richer information
than individual images due to the additional temporal di-
mension, which greatly aids in understanding temporal
events [14], reasoning [61], and identifying causality [10],
current video scene graph representations, primarily based
on bounding boxes, still fall short of replicating human vi-
sual perception. This gap can be attributed to their lack of
granularity, a limitation that can be overcome by integrat-
ing panoptic segmentation masks. This is echoed by the
evolutionary trajectory in visual perception research, pro-
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Table 1. Comparison between the PVSG dataset and some related datasets. Specifically, we choose three video scene graph generation
(VidSGG) datasets, three video panoptic segmentation (VPS) datasets, and two egocentric video datasets—one for short-term action an-
ticipation (STA) while the other is for video object segmentation (VOS), for comparison. Our PVSG dataset is the first long-video dataset
with rich and fine-grained annotations of panoptic segmentation masks and temporal scene graphs.

Dataset Task #Video Video Hours Avg. Len. View #ObjCls #RelCls Annotation # Seg Frame Year Source

ImageNet-VidVRD [36] VidSGG 1,000 - - 3rd 35 132 Bounding Box - 2017 ILVSRC2016-VID [34]
Action Genome [15] VidSGG 10,000 99 35s 3rd 80 50 Bounding Box - 2019 YFCC100M [44]
VidOR [35] VidSGG 10,000 82 30s 3rd 35 25 Bounding Box - 2020 Charades [37]

Cityscapes-VPS [17] VPS 500 - - vehicle 19 - Panoptic Seg. 3K 2020 -
KITTI-STEP [47] VPS 50 - - vehicle 19 - Panoptic Seg. 18K 2021 -
VIP-Seg [29] VPS 3,536 5 5s 3rd 124 - Panoptic Seg. 85K 2022 -

Ego4D-STA [12] STA 1,498 111 264s ego - - Bounding Box - 2022 -
VISOR [8] VOS 179 36 720s ego 257 2 Semantic Seg. 51K 2022 EPIC-KITCHENS [7]

PVSG PVSG 400 9 77s 3rd + ego 126 57 Panoptic Seg. 150K 2023 VidOR + Ego4D + EPIC-KITCHENS

gressing from image-level labels (i.e., classification) to spa-
tial locations (i.e., object detection), and finally to more
fine-grained, pixel-wise masks (i.e., panoptic segmenta-
tion [20]).

In this paper, we take scene graphs to the next level by
proposing panoptic video scene graph generation (PVSG), a
new problem that requires each node in video scene graphs
to be grounded by a pixel-level segmentation mask. Panop-
tic video scene graphs address a critical limitation in bound-
ing box-based video scene graphs: comprehensively cover-
ing both “things” and “stuff” classes (i.e., amorphous re-
gions such as water, grass, etc.), with the latter being es-
sential for contextual understanding yet challenging to lo-
calize with bounding boxes. For instance, when applying
PVSG to the video in Figure 1, relations like “adult-1 stand-
ing on the ground” and “adult-2 standing in water” become
evident, which are typically overlooked in bounding box-
based scene graphs. Furthermore, existing bounding box-
based annotations [15] often overlook small yet significant
details, for example, “candles on cake”.

To help the community progress in this new area, we
contribute a carefully annotated PVSG dataset, comprising
400 videos (289 third-person and 111 egocentric) with an
average duration of 76.5 seconds each. This dataset en-
compasses around 150K frames, all annotated with detailed
panoptic segmentation and temporal scene graphs, covering
126 object classes and 57 relation classes. A comprehen-
sive comparison of our PVSG dataset with related datasets
is shown in Table 1.

Our solution to the PVSG challenge involves a two-
stage framework. The first stage generates a set of fea-
ture tubes for each mask-based instance tracklet, while the
second stage constructs video-level scene graphs based on
these tubes. We explore two options for the first stage:
1) combining an image-level panoptic segmentation model
with a tracking module, and 2) employing an end-to-end
video panoptic segmentation model. For the scene graph
generation stage, we present four distinct implementations,
encompassing both convolutional and Transformer-based
methods.

In summary, we make the following contributions to the

scene graph community:

1. A New Problem: We identify several issues associ-
ated with current research in video scene graph gen-
eration and propose a new problem, which combines
video scene graph generation with panoptic segmenta-
tion for holistic video understanding.

2. A New Dataset: A high-quality dataset with fine, tem-
poral scene graph annotations and panoptic segmenta-
tion masks is proposed to advance the area of PVSG.

3. New Methods and Benchmarking: We propose a
two-stage framework to address the PVSG problem
and benchmark a variety of design ideas, providing
valuable insights for future research in this domain.

We have released two key codebases in this project:
PVSGAnnotation1 for the video panoptic segmentation an-
notation pipeline, and OpenPVSG2 to benchmark PVSG
methods, both aimed at aiding the community in further re-
search.

2. Related Work

Scene Graph Generation Given an image, the scene
graph generation (SGG) task expects the model to output
a scene graph representation, where nodes represent ob-
jects and edges represent relations between objects. To lo-
calize object instances, the nodes should be grounded by
the bounding boxes [50]. Classic scene graph generation
methods have been dominated by the two-stage pipeline that
consists of object detection and pairwise predicate estima-
tion [40, 41, 50, 58, 60]. Recent works on one-stage meth-
ods [4, 24, 52] provide simpler models that output seman-
tically diverse relation predictions. Though the prevalent
SGG benchmark Visual Genome [21] provides rich annota-
tions, it suffers from numerous “noisy” ground-truth predi-
cate labels, e.g., some unannotated negative samples are not
absolutely background. NICE [23] reformulates SGG as a
noisy label learning problem. They re-assign pseudo labels

1https://github.com/LilyDaytoy/PVSGAnnotation
2https://github.com/LilyDaytoy/OpenPVSG
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Figure 2. The PVSG dataset statistics. The PVSG dataset contains 400 third-person and ego-centric videos from diverse environments,
as shown in (a). The statistics of object classes and relation classes are shown in (b) and (c).

to detect noisy negative samples. Instead of exploiting the
noisy SGG datasets, recently a new task of panoptic scene
graph generation (PSG) [52] has been proposed with a re-
fined PSG dataset, based on panoptic segmentation anno-
tations to identify foreground and background concretely.
Our work extends PSG to the video level by predicting
spatial-temporal relations.

Video Scene Graph Generation Shang et al. [36] first
proposes Video Scene Graph Generation (VidSGG) and re-
leased the ImageNet-VidVRD dataset. They generate object
tracklet proposals and short-term relations on overlapping
segments. Subsequently, they greedily associate these rela-
tion triplets into video level. Several works follow the track-
to-detect paradigm with spatio-temporal graph and graph
convolutional neural networks [27, 32], or multiple hypoth-
esis association [39]. MVSGG [51] investigates the spatio-
temporal conditional bias problem in VidSGG. They per-
form a meta-training and testing process, constructing the
data distribution of each query set w.r.t. the conditional
biases. TRACE [43] decouples the context modeling for
relation prediction from the complicated low-level entity
tracking. [1] raises the issue of domain shift between im-
age and video scene graphs. They exploit external com-
monsense knowledge to infer the unseen dynamic relation-
ship and employ hierarchical adversarial learning to adapt
from image to video data distributions. Embodied Semantic
SGG [25] exploits the embodiment of the intelligent agent
to autonomously generate an appropriate path by reinforce-
ment learning [9] to explore an environment.

Video Panoptic Segmentation Video Panoptic Segmen-
tation (VPS) [18, 29, 48] unifies both Video Semantic Seg-
mentation [5] and Video Instance Segmentation [54] in one
framework. It extends panoptic segmentation into video by
making instance IDs across frames consistent. VPSNet [18]

first extends cityscapes sequences [5] and builds a VPS
dataset for driving scene, along with a new metric named
Video Panoptic Quality (VPQ). STEP dataset [48] proposes
another metric named Segmentation and Tracking Qual-
ity (STQ) that decouples the segmentation and tracking er-
ror. VIP-Seg [29] proposes a large-scale VPS dataset which
contains various scenes. Several works [18, 49, 57] are pro-
posed to solve VPS task respectively. VIP-Deeplab [33] ex-
tends the Panoptic-Deeplab [2] with the next frame center
map prediction. Video K-Net [26] unifies the VPS pipeline
via kernel online tracking and linking. TubeFormer [19]
process tube-frames with temporal attention. Compared
with previous VPS datasets, our PVSG dataset contains ex-
tremely long videos, which bring new challenges for VPS
tasks. Moreover, our work goes beyond VPS tasks by also
considering relations across a video.

3. The PVSG Problem
The goal of the PVSG problem is to describe a given

video with a dynamic scene graph, with each node associ-
ated with an object and each edge associated with a relation
in the temporal space. Formally, the input of the PVSG
model is a video clip V ∈ RT×H×W×3, where T denotes
the number of frames, and the frame size H ×W should be
consistent across the video. The output is a dynamic scene
graph G. The PVSG task can be formulated as follows,

Pr (G | V) = Pr (M,O,R | V) . (1)

More specifically, G comprises the binary mask tubes M =
{m1, . . . ,mn} and object labels O = {o1, . . . , on} that
correspond to each of the n objects in the video, and their
relations in the set R = {r1, . . . , rl}. For object i, the mask
tube mi ∈ {0, 1}T×H×W collects all its tracked masks in
each frame, and its object category should be oi ∈ CO.
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Figure 3. Illustration of the PVSG Metric. Assuming the classi-
fication of the triplet is correct, to further match the ground truth
(GT) frame-wise, the predicted mask pair must have both sub-
ject and object masks with a mask IOU above 0.5. In this case,
only Frames 1 and 4 satisfy this condition, yielding an intersection
count of 2 and a union count of 5. Thus, the volume IOU is calcu-
lated as 0.4. As this value falls short of the 0.5 threshold, it is not
considered a successful recall.

For all objects in a frame t, the masks do not overlap, i.e.,∑n
i=1 m

t
i ≤ 1H×W . The relation ri ∈ CR associates a sub-

ject and an object with a predicate class and a time period.
CO and CR means the object and predicate classes.

Metric In practice, the output of the PVSG task is to pre-
dict a set of triplets to describe the input video. Take a triplet
as an example, which contains a relation ri from t1 to t2,
associates the subject with its class category os and mask
tube m

(t1,t2)
s , and an object with os and m

(t1,t2)
o . m(t1,t2)

denotes the mask tube m span across the period of t1 to t2.
To evaluate the PVSG task, we follow the classic SGG

and VidSGG paper and use the metrics of the R@K and
mR@K, which calculates the triplet recall and mean re-
call given the top K triplets from the PVSG model. A
successful recall of a ground-truth triplet (ôs, m̂(t̂1,t̂2)

s , ôs,
m̂

(t̂1,t̂2)
o , r̂(t̂1,t̂2)i ) should meet the following criteria: 1) the

correct category labels of the subject, object, and predi-
cate; 2) the predicted mask tubes (m(t1,t2)

s , m(t1,t2)
o ) and

the ground-truth tubes (m̂(t̂1,t̂2)
s , m̂(t̂1,t̂2)

o ) should have vol-
ume IOU over 0.5. More specifically, we compute the time
IOU between the ground-truth (t1, t2) and (t̂1, t̂2), and the
frame t is considered as intersection only when both mt

s

and mt
o have mask IOU over 0.5 compared to their ground-

truth counterpart. Figure 3 shows how volume IOU calcu-
lates. Following the scene graph generation conventions,
we adopt a 0.5 threshold for time IOU as the standard for
considering a triplet recalled. Additionally, in the exper-
iment, we also report results with the threshold of 0.1, a
lower standard relaxes the criteria for time span prediction.

Please notice the nuance of the PVSG metrics compared
with VidSGG metrics for VidOR [35]. For a case where
a child stops and goes several times in a video, different
from VidOR which considers several “child-1 walking on
ground” triplets, our PVSG metrics only consider the triplet

once, but with a scattered time span. This small change
avoids some relations dominating the metrics by repeating.

4. The PVSG Dataset
In this section, we first summarize the existing VidSGG

datasets and highlight their problems. Then, we introduce
the overview and statistics of our PVSG dataset and its an-
notation pipeline.

4.1. Connecting Existing Datasets to PVSG

To select candidate video clips for the PVSG dataset,
a go-to option is to borrow the videos from other
VidSGG datasets. Table 1 lists three classic VidSGG
datasets chronologically. While the limited size of their
first VidSGG dataset, ImageNet-VidVRD [36], Shang et
al. collects 10K videos from the user-uploaded dataset
YFCC100M [44] and generate a large-scale VIDOR
dataset [35], with dense object and relation annotation.
Ji et al. also introduces a large-scale dataset Action
Genome (AG) based on a diverse, crowd-sourcing Charades
dataset [37]. While Charades provides a novel solution to
gather large-scale, less-biased video datasets by asking peo-
ple to act based on the generated script, the curated scripts
usually produce random action series, such as a man rush-
ing out of the room and running back for no reason. Also,
the performance traces turn out to be heavy in the dataset.
These shortcomings limit the potential of the community to
explore contextual logic and reasoning in videos.

Alternative video datasets that lean toward logic reason-
ing and video scene understanding are instruction datasets
or movie datasets. However, these datasets are either
full of close-up shots (e.g., Something-Something [11],
Howto100M [30]) or cut shots (e.g., MOMA [28], HC-
STVG [42]). In fact, humans rely on unpolished videos to
form an essential understanding of the world. In this sense,
we find that the unedited, natural, and diverse VidOR [35]
videos are a good candidate for learning the visual essence
as well as keeping the potential of contextual logic explo-
ration. While the videos presented above showcase a third-
person perspective, egocentric videos have gained popu-
larity due to their practicality in autonomous driving [56],
robotic decision-making [59], and in the metaverse [31]. In
particular, a subset of the Ego4D dataset [12] is suitable for
exploring logical relationships and modeling, as it supports
short and long-term action anticipation tasks. Additionally,
the Epic-Kitchens [6] dataset is focused on the kitchen sce-
nario and offers rich action data. Its subset, the VISOR
dataset, includes video object segmentation (VOS) annota-
tion, which partially matches the PVSG scope, though its
relations are not yet annotated.

Another dataset category that is closely related to
the PVSG problem is the video panoptic segmentation
(VPS) datasets. Popular VPS datasets include Cityscapes-
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Figure 4. PVSG Dataset Annotation Pipeline. The construction of the PVSG dataset can be divided into VPS annotation and relation
annotation. For VPS annotation, we select a few key frames and use an off-the-shelf video object segmentation (VOS) model AOT [55] to
propagate the annotated objects to the whole video, and then perform frame-level mask fusion using the predefined layer order to obtain a
coarse VPS annotation for further revision. The relations are annotated based on the description of the key information in the video.

VPS [17] and KITTI-STEP [47]. However, the relations
in the self-driving scenarios are limited, which is not suit-
able for the PVSG task. Although the recent VIP-Seg [29]
provides a more diverse VPS dataset, each video only lasts
around 5 seconds, which also lacks temporal relations.

With all the rationale above, we eventually decide to
combine three video sources to the PVSG dataset, which
are VidOR, Ego4D-STA, and Epic-Kitchens-100 (including
some videos from VISOR).

4.2. Dataset Statistics

Figure 2 displays the statistics of the PVSG dataset,
which consists of 400 videos, including 289 third-person
videos from VidOR and 111 egocentric videos from Epic-
Kitchens and Ego4D. Among the videos, 62 videos feature
birthday celebrations, while 35 videos center around cere-
monies, providing rich content for contextual logic and rea-
soning. Furthermore, the dataset includes numerous videos
related to sports and pets, featuring complex and diverse ac-
tions and interactions between objects. Figure 2 (c) shows
the object count (including stuff) in the PVSG dataset.

4.3. Dataset Construction Pipeline

Creating the PVSG dataset is never a trivial task con-
sidering that both video panoptic segmentation and relation
annotations are required. This section describes how the
PVSG dataset is collected and annotated.
Step 1: Video Clip Selection To get rid of the drawbacks
of the current datasets (i.e., the unnatural videos in AG [15]
without logical script, and the static and short videos from
the VPS datasets), we carefully select around 300 long,

daily, unedited videos with a logical storyline. In addi-
tion, to encourage the VidSGG models to be practical on
egocentric videos, we also select around 100 videos from
Epic-Kitchens and Ego4D with the same criteria. Videos
with too many small and trivial objects are also discarded
for VPS annotation purposes. We hope the selected videos
could greatly encourage the exploration of video recogni-
tion, understanding, and reasoning.

Step 2: VPS Annotation Notice that the PVSG videos
have more than 300 frames on average and 150K in total,
it is impossible to annotate panoptic segmentation for each
frame. After iterations and improvements, we finalize a
human-machine collaborative VPS annotation pipeline, de-
picted in Figure 4. In a nutshell, we largely rely on an
off-the-shelf VOS model called AOT [55] for the human-
machine interactive annotation process.
Coarse VPS Annotation: With a few well-annotated ob-
ject masks in the first frame, the AOT [55] is able to prop-
agate the masks to later frames. With this strong automatic
tool, we design a pipeline to obtain coarse VPS annota-
tion. For the example video in Figure 4 (actions 1-3), we
first identify several key objects to annotate and also iden-
tify key frames where the selected objects have a clear and
whole appearance. To identify key objects, our annota-
tors need to select all objects and backgrounds to address
“panoptic”, except those messy and unrelated ones. After
annotating these key objects on their corresponding frames,
we use AOT based on the frames to propagate the mask,
both forward and backward. Thus, each frame will yield a
whole mask video. To merge those mask videos into one,
the layer order should be considered beforehand, i.e., the
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Figure 5. The two-stage framework to solve the PVSG task. The goal of the first stage is to obtain the video panoptic segmentation mask
for each object, as well as its corresponding video-length feature tube. Two options are provided to achieve the goal. The second stage
predicts pairwise relations based on all the feature tubes from the first stage. Four options are provided for a comprehensive comparison.

objects from which layer should be put in front. In fact, the
decision of the layer order is made with keyframe selection.
Fine VPS Annotation: Based on the coarse VPS annota-
tion, we conduct several rounds (more than 5) of the human-
machine interactive revision process to obtain the final an-
notation. We rely on the multi-frame panoptic segmentation
propagation mode of the AOT algorithm [55], which inter-
polates the entire video mask based on several frames with
the entire panoptic segmentation. The quality of interpola-
tion increases with more intermediate frames. To accelerate
the revision process, we revise the transit frames first, as
shown in action 5 in Figure 4. Typical examples of poor
masks include incorrect tracking masks and boundaries that
deviate significantly from the object.
Step 3: Relation Annotation We annotate temporal re-
lations based on the VPS annotation, with object ID pre-
pared. To guarantee the significance of the relation, we ask
annotators to describe the video with several sentences and
annotate relations accordingly. The relations they use are
strictly within our dictionary, but we also enlarge the dictio-
nary when necessary. Similar to the PSG dataset [52], we
ask the annotators to use the most unambiguous predicate
possible, i.e., “sitting on” rather than “on”.

5. Methodology
In this section, we introduce the two-stage pipeline to

address the PVSG problem. We provide two options for the
first stage and four options for the second stage.

5.1. Stage One: Video Panoptic Segmentation

Given a video clip input V ∈ RT×H×W×3, the goal of
VPS is to segment and track each pixel in a non-overlap
manner. Specifically, the model predicts a set of video clips
{yi}Ni=1 = {(mi, pi(c))}Ni=1, where mi ∈ {0, 1}T×H×W

denotes the tracked video mask, and pi(c) denotes the prob-
ability of assigning class c to a clip mi. N is the number of

entities, which includes thing classes and stuff classes.
We present two strong baselines for the first stage of VPS

processing. In particular, we adopt the state-of-the-art im-
age segmentation baseline [3] with an extra tracker and the
improved video panoptic segmentation method [26]. For
the former, it processes the video frames individually. For
the latter, it processes the video frames across the temporal
dimension, with a nearby frame as the reference frame.

IPS+T: Image Panoptic Segmentation With Tracker
We adopt strong Mask2Former [3] as our baseline method
since it is a mask-based transformer architecture. It con-
tains a transformer encoder-decoder architecture with a set
of object queries, where the object queries interact with en-
coder features via masked cross-attention. Given an image
I, during the inference, the Mask2Former directly outputs a
set of object queries {qi}, i = 1, . . . , N , where each object
query qi represent one entity. Then, two different multiple-
layer perceptrons (MLPs) project the queries into two em-
beddings for mask classification and mask prediction, re-
spectively. During training, each object query is matched to
ground truth masks via masked-based bipartite matching.

We first fine-tune the Mask2Former on our dataset.
Then, we test the model with an extra tracker [46]. In par-
ticular, we first obtain panoptic segmentation results of each
frame. Then we link each frame via using UniTrack [46] for
tracking to obtain the final N tracked video cubes for each
clip. Therefore, a query tube is obtained. For the object i at
the t-th frame, the query is noted as qti . We use Q(t1,t2)

i to
denote the set of queries {qti}

t2
t=t1 , and Qi denotes the query

tube in the entire video.

VPS: Video Panoptic Segmentation Baseline For video
baselines, we modify the previous state-of-the-art method
Video K-Net [26] into Mask2Former framework. We first
replace the backbone and neck in Video K-Net [26] with the
Mask2Former feature extractor. Then we use the temporal
contrastive loss to perform directly on the output queries
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Table 2. Comparison between all two-stage PVSG baselines. We provide two options for the first stage and four options for the second
stage, as described in Section 3. The results show that using the basic image-based method in the first stage with the transformer encoder
in the second stage can achieve optimal recall.

Method thre = 0.5 thre = 0.1

Stage-1 Stage-2 R/mR@20 R/mR@50 R/mR@100 R/mR@20 R/mR@50 R/mR@100

IPS+T [3, 46]

Vanilla 3.04 / 1.35 4.61 / 2.94 5.56 / 3.33 8.28 / 5.68 14.47 / 9.92 18.24 / 11.84
Handcrafted Window 2.52 / 1.72 3.77 / 2.36 4.72 / 2.79 8.07 / 5.61 13.42 / 8.27 16.46 / 10.11
1D Convolution 3.88 / 2.55 5.24 / 3.29 6.71 / 5.36 10.06 / 8.98 14.99 / 12.21 18.13 / 15.47
Transformer Encoder 3.88 / 2.81 5.66 / 4.12 6.18 / 4.44 9.01 / 6.69 14.88 / 11.28 17.51 / 13.20

VPS [3, 26]

Vanilla 0.21 / 0.10 0.21 / 0.10 0.31 / 0.18 6.29 / 3.04 9.64 / 6.74 12.89 / 9.60
Handcrafted Window 0.42 / 0.13 0.52 / 0.50 0.94 / 0.92 5.24 / 2.84 7.65 / 7.14 9.64 / 8.22
1D Convolution 0.42 / 0.25 0.63 / 0.67 0.63 / 0.67 8.07 / 7.84 11.01 / 9.78 12.89 / 10.77
Transformer Encoder 0.42 / 0.61 0.73 / 0.76 1.05 / 0.92 6.50 / 5.75 9.64 / 8.25 12.26 / 9.51

from the last layer of the decoder. In particular, given
two frames, we first obtained the object queries from both
frames and then we sent them into an embedding layer (a
shared MLP) to obtain association embeddings. We adopt
the same tracking loss used in [26] to supervise the associ-
ation embeddings. The embeddings are close if they are the
same object, otherwise, they are pulled away.

During the training, the two nearby frames are sent to
the model to learn the association embedding. During the
inference, the learned association embeddings are used to
perform instance-wised tracking cues to match each thing
masks frame by frame in an online manner. Compared with
the image baseline, our video baseline considers the tempo-
ral learned embedding. After this step, we obtain N tracked
video cubes for each clip. For both baselines, we also dump
the corresponding object queries for further processing.

5.2. Stage Two: Relation Classification

The object query (feature) tubes {Qi}Ni=1 serve as a link
between the first and second stages. As shown in Figure 5
(b), these tubes are initially formed into query pairs. For
efficient training of the relation model, these pairs are then
matched with their corresponding ground-truth pairs based
on mask IOU values, with non-matching pairs being dis-
carded. This selective process assigns relation labels to cer-
tain predicted query pairs during specific time spans.
Pair Selection It is important to note the difference in
pairing selection between the training and inference phases.
During training, pairs are easily selected based on their
match with the ground truth. However, at inference, pairing
all possible combinations would yield N × (N − 1) pairs,
an impractically large number. To address this challenge,
we have developed a compact, trainable pairing component.
This component leverages a transformer encoder to cross-
attend to all other object features within each frame, thus
gathering global information. Subsequently, it uses max
pooling to condense the query tube {Qt

i}Tt=t0 into a single
token for each object. This process allows for the calcula-
tion of pair-wise similarities and the construction of a sparse
pairing matrix, which is optimized towards the ground truth

pairing matrix using a multi-label loss [38].
Next, we introduce four operation options to predict the

relations of each feature pair.
Vanilla: Fully-Connected Layers Begin with the most
basic version, the pairwise feature fusion is followed by
three straightforward fully-connected layers on the fused
features. Since some objects may have several interactions
occurring simultaneously, we define the issue as a multi-
label classification job with binary cross-entropy loss.
Handcrafted Filter To further consider the temporal in-
formation, we design a simple kernel to gather the infor-
mation from the context in nearby frames. By default, the
handcrafted filter is a simple vector of [ 14 ,

1
2 , 1,

1
2 ,

1
4 ] with a

window size of 5. The filter is also required in inference.
1D-Convolutional Layer To improve the handcrafted fil-
ter, we also utilize a learnable 1D-Convolutional layer to
capture temporal information. The kernel sizes are set to 5.
Transformer Encoder A transformer encoder [45] is nat-
urally suitable for encoding the temporal data. We utilize
a transformer block with positional embeddings in the en-
tire fused query feature to capture temporal information via
cross-attention between frames.

6. Experiments
In this section, we show the experimental results for the

PVSG dataset. We split the dataset with 338 videos for
training and 62 videos for testing3. For both IPS+T and
VPS, we adopt Mask2Former [3] upon the ResNet-50 [13]
backbone with 8 training epochs, both take about 48 hours
on 4 V-100 GPUs. The training epoch of the second stage
is set to 100, which takes about 8 hours on one V-100.

Better Temporal Modeling Boosts Relations Prediction.
We first take a look at the second stage. The transformer
encoder obtains the optimal results regardless of the first-
stage options, underscoring its proficiency in synthesizing
temporal information. Moreover, the 1D convolutional ap-
proach outperforms the handcrafted window method, sug-
gesting that incorporating learnable parameters in the sec-

3Check the annotated videos in each split here.
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adult-14 touching stove-5

board-9 on countertop-4

pan-28 in front of wall-12

adult-13 holding vegetable-70

adult-28 holding vegetable-70

adult-28 holding rag-85

(a) The visualization result with the IPS+T method in the first stage and Transformer Encoder in the second stage.

(b) The visualization result with the VPS method in the first stage and Transformer Encoder in the second stage.
Figure 6. The visualization of the top 3 triplets generated by PVSG models. The result shows that the IPS+T method is able to predict a
better-quality video panoptic mask. The VPS baseline is shown unable to perform well on tracking (e.g., the tracking of the adult switched
in the later frames), which leads to its low performance in the PVSG task. Check project page for more visual results.

ond stage can be beneficial. Notably, even the most ele-
mentary vanilla method registers some recall considering
the harsh recall criteria described in Section 3. This indi-
cates that with a decent model in the first stage, the PVSG
task is indeed approachable.

VPS Models Lag Behind IPS+T. Moving on to the
impact of the first stage, Table 2 reveals that the end-to-
end VPS model appears to lag behind the IPS+T base-
lines. While VPS models have demonstrated their effective-
ness on established datasets like Cityscape-VPS and KITTI-
STEP, the PVSG dataset, characterized by its longer and
more dynamic videos with frequent and significant shifts
in camera view, presents novel obstacles for VPS research.
This is evident in Figure 6, where the VPS models’ sub-
par tracking ability significantly hampers their PVSG task
performance. Table 2 also reflects this, particularly at a
0.1 threshold, where a minimal overlap in masks is suffi-
cient for a recall. Here, the VPS results are nearly on par
with IPS+T at R/mR@20, indicating that when the criteria
for mask tube overlap are less strict, VPS can almost reach
IPS+T levels, though not quite.

Understanding Numbers. When examining Table 2, it
is crucial to prioritize the R/mR@20 as it represents our
most significant indicator. The highest value for R@20 cur-
rently stands at 3.88, meaning that roughly for every 25
ground-truth triplets, one meets the criteria for a successful
recall, indicating a relatively low efficiency. However, when
setting the threshold to 0.1, the score improves to around 10,

meaning the model can predict one in every 10 triplets with
a looser requirement of recall. This suggests that while the
model has some capability in recognizing key video con-
tent, there is substantial room for improvement in its accu-
racy and effectiveness.

7. Conclusion, Challenges, and Outlook
In this paper, we introduce a new PVSG task, a new

PVSG dataset with several baselines to address the new
task, in the hope of encouraging comprehensive video un-
derstanding and triggering more interesting downstream
tasks such as visual reasoning. Here we discuss the chal-
lenges and future work.
Challenges Real-world data often exhibit long-tailed dis-
tributions across objects and relations, as shown in Figure 2.
The PVSG models are expected to predict informative and
diverse relations, rather than being obsessed with statisti-
cally common relations. Yet another challenge the PVSG
models face is the uncertainty in relation descriptions. For
example, “playing with” can be overlapping with “chasing”
when it describes two kids chasing each other. Another im-
portant challenge is that the PVSG models seem to largely
rely on video panoptic segmentation. With the video with
a large view shift, the VPS models are expected to have
a better performance on tracking and segmentation. Addi-
tionally, the time span prediction is a critical aspect of the
PVSG model. A more sophisticated time-series technique
could benefit the model development.
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Outlook on Video Perception and Reasoning We fore-
see the potential of PVSG in bridging video scene percep-
tion and reasoning. While current video question-answering
datasets lack pixel-level segmentation masks that refine
(sometimes determine) the relations between object pairs,
the inclusion of such dense annotations could be critical to
video reasoning tasks. In fact, the PVSG dataset also pro-
vides dense captioning and question-answering annotation
for each video, which could benefit the topic of reasoning
and conversational chatbots. PVSG is related to social intel-
ligence, with rich event annotations in human behaviors and
dynamics. In this spirit, the PVSG models might be critical
to embodied agent tasks or virtual reality techniques, as the
egocentric data is especially highlighted in the dataset.

Potential Negative Societal Impacts This work releases
a dataset containing human behaviors, posing possible gen-
der and social biases inherently from data. Potential users
are encouraged to consider the risks of overlooking ethical
issues in imbalanced data, especially in underrepresented
minority classes.
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A. Implementation Details

All experiments are performed in a single unified code-
base called OpenPVSG, using the MMDetection frame-
work to facilitate reproducibility.

A.1. IPS+T

Fine-tuning the Image Panoptic Segmentation Model
We first fine-tune the Mask2Former model (ResNet50 back-
bone) on the panoptic segmentation annotations from our
PVSG dataset. Here we treat the PVSG dataset as an
image dataset and process all video frames individually.
The model is initialized from the best performing COCO-
pretrained weights provided by MMDetection and then
trained using a batch size of 32. The AdamW optimizer is
used with a learning rate of 0.0001, weight decay of 0.05,
and gradient clipping with a max L2 norm of 0.01. The
learning rate is multiplied by 0.1 for the backbone, and the
weight decay is set to 0.0 for embedding layers. Training
runs for 8 epochs.

Mask Association with Tracker With both panop-
tic segmentation masks and the corresponding query fea-
tures obtained from the fine-tuned Mask2Former model
above, we then adopt the UniTrack model to asso-
ciate masks in each frame to get the panoptic mask
tubes and query feature tubes for each video clip. We
configure the tracker using Unitrack’s default config
(config/imagenet resnet18 s3 womotion.yaml)5 of Multi-
Object Tracking and Segmentation (MOTS) setting and
load pre-trained weights of their provided image-based SSL
model MoCoV1-ResNet50, which has the best perfor-
mance in MOTS task.

A.2. VPS

Fine-tuning the Video Panoptic Segmentation Model
We utilize Video K-Net implemented on a Mask2Former
backbone as our VPS model, and train it using video panop-
tic segmentation annotations from our PVSG dataset. Op-
timal COCO-pretrained weights obtained from MMDetec-
tion are used to initialize the Mask2Former model.

A.3. Relation Modeling

Relation Dataset Formation After completing the train-
ing of IPS+T and VPS models, we extract predicted feature
tubes for each entity in the training videos. These tubes
are segmented into individual frames for relation analysis.
Specifically, within each frame, if both the subject and ob-
ject predicted masks have a mask IOU greater than 0.5, we
establish a relation between the pair. Subsequently, we map

5https://github.com/Zhongdao/UniTrack/

the relation annotations from ground truth pairs to these pre-
dicted pairs, forming the basis for the secondary stage of
training.
Training The training process begins with the use of two
transformer models, one for the subject and one for an ob-
ject, designed to encode each entity. This encoding ensures
that each entity feature is enriched with contextual informa-
tion from other entities in the frame. For the pair-selection
model, we employ max pooling to distill the object feature
tube into a singular object token. We then calculate cosine
similarity to form a pairing matrix, indicative of potential
relations. This matrix is contrasted with a ground truth ma-
trix for supervision. In relation prediction, a multi-label loss
computation is applied exclusively to pairs with established
relations. The training is conducted with a batch size of 32,
utilizing an Adam Optimizer with a learning rate of 0.001.

B. Details of PVSG Formation
In Section 4, we discuss several existing video datasets

related to the PVSG dataset. In this section, we would like
to elaborate on their characteristics and highlight our main
considerations when building the PVSG dataset.

B.1. Video Selection and Focus

We will first discuss some typical video datasets that
are closely related to the PVSG task, and explain how we
choose video sources to compose the PVSG dataset. We
especially pay attention to the videos we think are better
suited to explore contextual logic and reasoning. Here is a
list of candidate datasets.
Third-Person-View (TPV) video candidates include
VidSGG datasets (e.g., ImageNet-VidVRD [36], VI-
DOR [35] and Action Genome [15]), video understanding
dataset (e.g., TVQA [22], Howto100M [30]), and video
panoptic segmentation dataset from VIP-Seg [29].
Egocentric video candidates include Ego4D-STA [12],
VISOR [8].

ImageNet-VidVRD [36]: Short and Static Videos Al-
though it is the first dataset to study video visual relations,
most of VidVRD’s video clips last only a few seconds and
have almost static scenes. While it is a useful dataset for
detecting relations between objects, additional research in
logic and reasoning through temporal relation changes in
videos may not be possible.
Action Genome [15]: Lack of Logic between Actions,
Heavy Traces of Performance With dense relation an-
notations, Action Genome is commonly used in video scene
graph generation task in recent years. Videos in Action
Genome source from Charades dataset, which was made by
267 different users acting out certain sentences constructed
by objects and actions from a fixed vocabulary. While some
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Figure A1. An ImageNet-VidVRD example. The dog and the scene in this 7-second video barely change from start to finish.

videos contain multiple actions and dynamic scenes, the
transitions between these actions show heavy traces of per-
formance. Due to the nature of the generated scripts, the
whole video is more like a splicing of some instructed verbs.
Consequently, there is no clear logic in the sequence of ac-
tions for observers to comprehend the video. In addition,
simple videos with one or two actions made up a certain
portion of this dataset. Therefore, we think Action Genome
is not suitable for the PVSG task.

VIDOR [35]: A Good Candidate VIDOR is a large-
scale dataset with all videos collected from user-uploaded
videos on Flickr. Most of the videos are unedited records of
daily life scenes, which ensures the coherence of the video
plot and the natural connection of action changes. While
there are useful videos in VIDOR, most of the videos con-
tain too simple relations and some have ambiguous content.
Therefore, we carefully select a subset of videos from VI-
DOR that fulfill our requirements to form the third-person
view part of the PVSG dataset. The explanation of the good
video in VIDOR is shown in Figure A4.

Detailed Video Selecting Rules

• Selected videos should have main characters and con-
tain a sequence of consistent actions (relations).

• Selected videos need to be comprehensible by ob-
servers.

• Discard videos with too many trivial and small objects
for annotation purposes.

TVQA [22]: Too many cut shots TVQA is a frequently
used dataset in Video Question Answering tasks. Since
VQA also intends to study logical reasoning in videos,
datasets in this domain lie in the relevant scope of the
PVSG. However, videos from the TV show/movie datasets
like TVQA contain lots of cut shots, which make it chal-
lenging to associate and relate objects across discontinuous
scenes. Moreover, understanding such videos usually re-
lies heavily on contextual information in the show. Hence,
datasets like TVQA cannot apply to the PVSG task. Fig-
ure ?? shows an example for reference.

VIP-Seg [29]: VPS but Static Videos VIP-Seg is a
large-scale video panoptic segmentation dataset. Despite
the fine annotations, the video scene is generally static and
includes only one action due to the average video length of
5 seconds. Figure A6 shows an example for reference.
Howto100M [30]: Curated videos with many cut shots
HowTo100M is a large-scale dataset of instructional videos
where complex tasks are broken into steps for the audi-
ence to learn. Clear logic can be found in such a dataset
when a series of actions are made to address a specific task.
However, one video contains many cut shots and is filmed
from different angles (edited by the video creator). Hence,
Howto100M does not fit for PVSG task. Figure A7 shows
an example for reference.

Egocentric Videos: Suitable for PVSG The PVSG
dataset also contains egocentric videos, with the scope that
the models should tackle the problems for both third-view
videos and egocentric videos. Two high-quality egocentric
datasets, Ego4D [12] and VISOR [8] are good candidates
for selection. In fact, egocentric videos are usually token
when the actors are performing a specific task. The task
usually contains a chain of actions with inherently clear
logic. Therefore, egocentric videos are suitable for the rea-
soning task, and exploring scene graph generation based on
these videos might invite a variety of techniques including
perception and reasoning. Figure A8 shows an example for
reference.

B.2. Annotation Quality

In this section, we will focus on our selected datasets
discussed in Section B.1, compare their original annotations
with the PVSG annotations, and analyze the necessity of
panoptic segmentation for video scene graph generation and
video reasoning.

Comparison between VIDOR Figure A9 shows the
comparison between VIDOR and our PVSG dataset. We
first observe the drawbacks of the VIDOR. 1) It contains in-
consistent bounding box annotations, e.g., the child is not
cropped out at the first frame; 2) It misses important de-
tails, with no candle annotation, resulting in missing rela-
tions that are important to understand the scene. Actually,

13



Figure A2. An Action Genome example. In 10 seconds, the man quickly makes several actions: gets up from the bed, puts on his glasses,
grabs and glances at the computer on the bed in 1 second, gets up and picks up the box, then walks out the door.

Figure A3. Another Action Genome example. In 20 seconds, the man keeps standing in front of the TV and holding a book in his hand.

Figure A4. A VIDOR good video example (demo video). At the beginning of the video, the man is pulling up his pants, the woman
is holding up her skirt and standing in the water while the woman in black is taking pictures. We can guess from their outfits and the
surroundings that this is a wedding photo shoot scene. Next, the man walks into the water and poses for photos with the woman. They hug
each other, kiss each other, and drink liquor as the crowd cheers.
There’s a sequence of actions in this one-minute demo video, with natural logical relationships between these actions. Both rich actions
and coherent plots make this video more understandable and predictable. We think videos like this can make dynamic scene graphs better
connected and attach more significance to the PVSG task.

bbox is hard to annotate such small details; 3) There are
many overlaps among different bounding boxes, one bound-
ing box contains multiple object features; 4) Relation anno-
tations only have simple predicates such as ”watch”, ”hold”
and many prepositions in the example frame, which cannot
really describe what is happening in this frame; 5) Bound-
ing box cannot annotate stuff such as water and ground. Ac-
tually, they also play an important role to understand the

scene.

With all the considerations above, we annotate the PVSG
dataset with great caution, such as 1) having a consistent
annotation for all the objects. Once they are decided to be
annotated, they will be annotated throughout the video; 2)
we carefully design the object vocabulary beforehand after
watching all the videos in the dataset to ensure all impor-
tant objects are annotated; 3) panoptic segmentation avoids
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Figure A5. TVQA example Cut shots appear every few seconds in TVQA videos.
??

Figure A6. A VIP-Seg example. The man keeps on plowing in this 10-second video clip.

Figure A7. An Howto100M example. A girl is teaching people how to care for American Girl Doll’s hair.

0s 15s 30s 45s 60s 75s 90s

0s 20s 40s 60s 80s 100s 120s

(a) A video selected from Ego4D

(b) A video selected from VISOR

Figure A8. Examples from Ego4D [12] and VISOR [7]. Both of these egocentric datasets are long videos (over 1 min), and the actors
are doing specific tasks such as cooking and cleaning. Therefore, these videos inherently contain abundant contextual logic.
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Figure A9. Comparison between VIDOR and PVSG annotations. The VIDOR annotation uses bounding boxes to annotate objects in
the videos. It is shown that some important objects are not annotated, such as candles. Without candles, important relations such as the
kid blowing the candles can not be annotated too. In the PVSG dataset, the problem is solved by carefully defining the object classes.
The high demand for our panoptic segmentation annotation also solves problems like the kid not being cropped out in Frame 0011. For
relation annotation, the VIDOR contains many positional relations. However, most of the positional relations can be figured out in the
static images, but the PVSG annotation highlights the dynamic relations in the video,

overlapping masks; 4) when annotating the relations, we
focus on the dynamic relations rather than having many po-
sitional relations; 5) Panpotic segmentation is able to anno-
tate the background that are critical to comprehensive scene
understanding.
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